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1. INTRODUCTION

Recently, Niirnberger and Sommer [3] have shown that there exists a
continuous selection for uniform best approximation by splines with fixed
knots if and only if the number of knots k is less than or equal to the order
m of the splines (for definitions, see the end of this section). We begin this
paper by applying a general result on continuous selections [1] to describe
the set of all continuous selections for spline approximation, and as a conse­
quence establish that this set is never a singleton.

In Section 3 we examine a certain maximal alternator as a natural
candidate for a continuous selection (different from the one constructed in
[3 D. We show that this maximal alternator is unique, but unfortunately does
not provide a continuous selector. On the other hand, we do show the
surprising fact that for every function f, the maximal alternator is the value
of some continuous selection at f We conclude the paper with two sections
including examples and remarks.

We devote the remainder of this section to notation and basic definitions.
Let [a, b] be a closed interval, let k be a positive integer, and suppose
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A = {a = Xo <x, < ... < X k < X k +1= b} is a partition of [a, b]. Given an
integer m~ 2, we define

YmCA) = {s E Cm- 2 [a, b j: sl[xl , Xi+'] is a polynomial of order m

for each i = 0, 1,..., k}. (1)

This is the space of polynomial splines of order m with (simple) knots
x, ,..., xk • It is well known (cf., e.g., [7]) that Ym(J) is an (m +k)­
dimensional Weak-Tschebyscheff space.

For any fE qa, b], we denote the set of uniform best approximations off
by elements ofYm(Lf) by

P(f) = {s E Ym(A): IIf- sll =d(f)}, (2)

where d(f) = dist(f, Ym(Lf» =infsfYml.1) Ilf- sll and II II is the usual
maximum norm on qa, b]. We are interested in the question of when there
exists a continuous mapping

S: C[a, b j -. C[a, b1

with the property that SfE P(f) for all fE qa, b]. Such an S is called a
continuous selection for the set-valued metric projection P.

2. THE SET OF CONTINUOUS SELECTIONS

Suppose k ~ m, and let S* be the continuous selection for spline approx­
imation constructed by Nurnberger and Sommer [3]. Let fE C[a, bj, and
given any nonempty subset A £; P(f), define

E(f-A) = {x E [a, b]: l(f- g)(x)1 =d(!) for all g E A}.

Let Po = P(f). We now define a sequence 10 , I, ,..., of intervals and a
sequence of sets P, ,..., as follows: for each j =0, 1,..., let

I j =the smallest knot interval which contains E(f- Pj) in

its relative (with respect to [a, b]) interior

and

PH' = {g E PJ : g coincides with S*fon Ij },

where by a knot interval we mean any interval of the form [Xi' x r +,] with
O~ l~r~k.

Obviously, there is a smallest j such that all elements of Pj coincide with
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(3)

S*f on I). Define I*(f) = I) and P*(f) =Pl' It follows immediately that
E(f- P*(f) is contained in the relative interior of I*(f), and it is easy to
see that I*(f) is contained in every knot interval I with the property that
E(f- p/(f)) is contained in the relative interior of I, where p/(f) =
{g E P(f): g coincides with S*f on I}. Indeed, if I is such an interval, then

p/(f) c::; Po => E(f- p/(f):2 E(f- Po) => 10 c::; I=>

p/(f) c::; PI => E(f- p/(f)):2 E(f- PI) => I) c::; I=>

p/(f) c::; P2 => •.• I*(f) c::; I.

We can now describe the set of all continuous selections for the metric
projection P associated with Ym(.A). By the main result of [1], we have

P*(f) = {Sf: S is a continuous selection for the

metric projection Pl.

Several examples of this construction are given in Section 4.
As an application of this characterization, we can now show that the

continuous selection S* of [3] is never the only continuous selection for
spline approximation with k";;; m.

THEOREM 1. There is never a unique continuous selection for spline
approximation.

Proof By [3], if k> m, there is no continuous selection. Suppose now
that k .,;;; m. Let f E C[a, b] be a function of norm 1 which alternates m times
on the interval [a, xI] and which vanishes identically on [x I' b]. Clearly,
d(f) = 1, and all best approximations offfrom Ym(A) are identically zero on
[a,x l ]. Thus, any spline of the form a(x-xl)~-1 with la(b-xl)m-ll.,;;; 1 is
also a best approximation off Since E(f- P(f)) is contained in [a, XI)' it
follows immediately that I*(f) = [a, XI] and P*(f) = P(f). For an example
of an f of this type see Example 9. I

3. MAXIMAL ALTERNATORS

We need the classical concept of alternation. A nonzero function
g E C[a, b] is said to alternate p times (on p + 1 points) provided there exist
a.,;;; t l < ... < tp + I";;; b such that either

i= 1,2,...,p+ 1,
or

i= 1, 2,...,p + 1.
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The following facts about approximation ofIE C[a, b] - Ym(Ll) are well
known (cf. e.g. [5,6]):

If s E Ym(Ll) is a spline such that 1- s alternates m + k times,
then s is a best approximation ofI from Ym(Ll). (4)

There exists an interval [Xi' Xj+ 1] with 0<' i <.j <. k in which all
best spline approximations s of I agree, and in which 1- s
alternates at least m +j - i times. (5)

There exists some s E P(f) such that 1- s alternates at least
m + k times and1- s does not alternate more times for any other
sEYm(Ll). (6)

A spline s E Ym(Ll) for which1- s alternates a maximal number of times
is called a maximal alternator for f Assertion (6) says that for every
IE Ym(Ll), there always exists at least one maximal alternator.

We now show that every IE C[a, b] - Ym(Ll) has a unique maximal alter­
nator if and only if k <. m. First we need

LEMMA 2. Suppose that IE C[a, b] - Ym(Ll), and that s is a maximal
alternator lor f Then lor all integers °<. I <. r <. k, the sets

A r = it: a <. t <. X r + 1 and l(f- s)(t)1 = d(f)}

B I = it: XI <. t <. band l(f- s)(t)1 = d(f)}

are both nonempty. Moreover, if I> 0, then there exist points a <. t 1 < '" <
t l <XI with

(_1)/ (f- s)(tJ = (_1)/-1 (1- s)(J),

1 = inf{t E B I }.

i = 1,,,., I,
(7)

Similarly, if r < k, then there exist points X r+ 1 < tr+ 1 < ... < tk <. b with

(-I)i (f- s)(ti ) = (-1)' (f- s)(t),

t = sup {t EAr}.

i = r + 1,,,., k,
(8)

Proof We claim that \(f- s)(t)1 = d(f) for some x k < t <. b. Indeed, if
this is not the case, then by choosing an appropriate c, we can construct a
spline s= s + c(x - Xk)~-l such that1- s alternates at least one more time
than 1- s, contradicting the maximality of s. Thus B k "* 0 and it follows
immediately that B I "* 0 for all 1=0, 1,,,., k. A similar argument establishes
that A r "* 0 for all r = 0, 1,.", k.

We turn now to the second part of the lemma. We consider the case
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r <k-the case I> 0 is similar. Suppose r <k, but that there are no points
xr + 1 < tr+ 1 < ... < tk ~ b satisfying (8). We now show that in this case we
can again construct a spline s such that 1- s alternates more times than
1- s, contradicting the hypothesis that s is a maximal alternator. We
distinguish two cases.

Case 1. Suppose t = x r+I' Let g = (f - s)II, where 1= [x r + l> b]. Since
U=span{(x-x;)r- I }7=r+1 is a Weak-Tschebyscheff space on I, by [2]
there is a u(x) = 2::7=r+ 1 ci(x - xi)r- I which is a best approximation of g
from U and which is such that g - u alternates at least k - r times on I.
(Since 1g(xr+1)1 = l(f- s)(i)1 = d(f), the distance of g from U is d(f)). This
implies that there exist points X r+ I = tr < '" < tk ~ b with

(_l)i (g - u)(t i ) = (-1)' (f - s)(i), i= r,..., k. (9)

But then s= s + u is a best approximating spline for f for which 1- s
alternates more times than 1- s. This contradiction shows that the asserted
t's must exist.

Case 2. Suppose f <xr+I' Then <5 =d(f) -I(f- s)(xr + 1)1> O. Let
c = sup {cr+I: II 2::~=r+ 1ci(x - x;)r-Ilil ~ 2d(f)}, and choose 0<e <
xr+2-xr+1 such that ce m

-
I <0/2 and IU-s)(x)1 <d-o/2 for all xEle,

where Ie = [xr+I' xr+ 1 +B]. Now define g on I by

g(x) = (f - s)(i),

= linear,

= (1- s)(x),

X =xr + l ,

x r+ 1 ~ X ~ x r+ 1 + e,

x r + I + e ~ x ~ b.

By [2], there exists a best approximation u of g from U which alternates at
least k - r times on I. In particular, since Ig(xr + 1)1 = l(f- s)(i)1 = d(f),
there exist points xr+ 1 = tr < ... < tk ~ b where (9) is satisfied. Now by the
choice of e, we have II u III ~ <5/2, while for all x E Ie'e

or

g(x) > -d + <5/2

g(x) <d - <5/2

if (f-s)(i»O

if (f - s)(i) <O.

We conclude that x r+1 + e~ tr+I' But then since g(x) = (f - s)(x) for
x r + 1 +e~ x ~ b, it follows that s= s +u is a spline for which f - s
alternates more times than f - s, contradicting the hypothesis that s is a
maximal alternator. We have shown that the asserted t's must exist. I

THEOREM 3. The space Ym(Ll) has the property that every IE C[a, b] '"
Ym(Ll) has a unique maximal alternator if and only if k ~ m.
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Proof. We consider first the case k ~ m. Fix IE C[a, b], and suppose s
and i are both maximal alternators for f. Then by (5), there exists some
interval where s == i. Let I = [XI' x r + I] be the largest such interval. If I is all
of [a, b], we are done. If not, then by Lemma 2, there exist points
a ~ t l < ... < t l <XI and x r+ 1 < tr+ 1 < '" < tk ~ b satisfying (7) and (8). A
similar set of points exists for i. Now consider s - i. Counting zeros as in
[7], we easily see that s - i has I zeros on [a, XI)' an m+ r -I-tuple interval
zero on I, and k - r zeros on (xr + I' b]. Since k ~ m, s - i cannot vanish on
any interval other than I, and hence the zeros on [a, XI) and (xr + l' b] are
isolated. Thus s - i has a total of m + k zeros, which by [7, Theorem 4.53]
implies that s == i. This shows that the maximal alternator is unique.

We turn now to the converse. Suppose that k> m. Let a = YI = ... = Ym
and Ym+k+ 1 = '" = Yk+2m = b. Set Ym+i = Xi" i = I,..., k. Let {Bi}T+k be the
corresponding B-spline basis for Y'm(Ll), (cf. [7 D. We now consider B m+I' It
is positive on the interval (Ym+l' Y2m+l) and vanishes identically on the
(since k >m) nontrivial intervals L = [a, Ym+ I] and R = [Y2m +l' b]. Define

and let Ym+1 <Z <Y2m+ 1 be a point where B attains its maximum.
It is clear that we can construct IE C[a, b] such that II I II = I, I alternates

between ±I exactly m times on each subinterval [Xi'X i + l ] of LUR, and

I(x) = B(x) - I,

= I-B(x),

Ym+I~X~Z,

Z ~x ~Y2m+I'
(10)

Then d(J) = I, and since each spline reduces to a polynomial on intervals of
the form [Xi' Xi+I]' it is clear from the construction that any best approx­
imation of I from Y'm(Ll) must vanish identically on L U R. But a spline
which vanishes on these intervals must be a constant multiple of the B-spline
Bm+l' and in fact we have

P(J) = laB: -I ~ a ~ l}.

Since all of these splines are such that1- aB alternates the same number of
times, they are all maximal alternators. We have established the nonuni­
queness in the case k > m. I

Now that we know when the maximal alternator is unique, there is a
natural way to define a selection using it. Suppose k ~ m. Then for each
IE C[a, b] we define

= sf otherwise,
(11)
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where sf is the unique maximal alternator associated with f This selection
unfortunately is not continuous as the following example pointed out to us
by Niirnberger and Sommer shows:

EXAMPLE 4. We consider approximation on [0,2) by splines in the
space .9;({l D· Let I and In be the functions shown in Fig. 1. It is clear that
In converges to I while Min = s for all n, and hence does not converge to
Mf I

Although M is not continuous, it is true that for every function J, MI is
contained in the set P*(f) defined in (3). To prove this, we first need a
lemma. In the remainder of this section, we suppose k ~ m. In this case for
every IE qa, b) there exists a unique largest knot interval 1(1) on which all
elements of P(f) agree.

LEMMA 5. Suppose Ie Y'm(L1). Then 1(1) is the smallest knot interval
containing the set E(f- P(I)).

Proof Let 1(/)= [XI,Xrtl ), O~l~r~k. Say r<k. We need to show
that J = E(f- P(/)) n (xrt 1 , b) = 0. First we show that J contains at most
k - r - 1 points, and in particular, if J = {tj };, then

j= l,...,p. (12)

To show this, let s::l= s be two elements in P(/), and fix 1 ~j ~ k - r. Now
consider e=s-srestricted to the interval [x" Xrti+I)' Clearly e(t)=O for
every t E J. Counting zeros as in [7), e has an m-tuple zero on the interval
[xr , xrt I)' and by the definition of 1(f) and the fact that k ~ m, it cannot
vanish on any other subinterval of [xr , Xrti+I)' But then since eEY'm
({xrtl',,,,xrtjD, by [7, Theorem 4.53), it can have at mostj-l zeros in

(Xrtl,Xrtjtl)'

FIGURE 1
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We can now show that J is actually empty. Suppose J = {til; with
1 <'P <. k - r - 1. Let s E rei interior P(f). Then \(f- s)(t)1 = d(f) for
tE (xr,b] only at tEJ. By (12) and [7, Theorem 4.78], there exists
gEspan{(x-xJ~-I}~~~:i such that g(tJ = sgn(f-s)(tJ, i= I,...,p. But
then for sufficiently small e >0, the spline s= s - eg E P(f), and f - s has
no extreme points in (xr + I, b]. This contradiction of the definition of J
implies that J must be empty.

We have shown that 1(f) is a knot interval containing E(f- P(f». We
now show that it is the smallest one. It suffices to show that E(f - P(f» n
(x"xr+ I]*0 and E(f-p(f»n[xp x 1+ 1)*0. Suppose E(f-p(f»n
(x" x r+ I] = O. Then if s E rei interior P(f), and if e*0 is sufficiently small,
s + e(x - xr)~-I E P(f), contradicting the fact that all elements of P(f)
have to agree with s on (xr,xr+ I ] C;;1(f). The other case is similar. I

THEOREM 6. For every fE CIa, b], MfE P*(f).

Proof By the definition of P*(f), it suffices to show that MfE Pi for
i = 1,2,.... Suppose MfE Pi' We now prove that MfE Pi+ I' As in Lemma 5,
there exists a unique largest knot interval [xl' x r+ I]' 0 <,1 <. r <. k, on which
all elements of Pi agree, and the same proof as in the lemma shows that
E(f- PJ C [Xl' x r+ I ]. Since MfE Pi' we know that Mf= S*fon [Xl' x r+ I]'
To show that MfE Pi + p it suffices to show that Mf = S *f in a
neighborhood of E (f - P;). If r < k and Xr+ 1 E E(f - PJ, then since by
Lemma 2, f - Mf alternates at least k - r times on [xr+I' b], it follows from
the construction of S * that S*f= Mf on [x r +P X r +2]' Similarly, if 0 < I and
X/EE(f-Pi), then S*f=Mfon [x/_I,x/]. This completes the proof. I

This theorem implies that in the construction of P*(f) defined in
Section 2, one can replace S *f by Mf (cf. the examples in Section 4).

4. EXAMPLES

In this section we give three examples of approximation of functions in
ClO, 3] by splines in the space Y;(A) with A = p, 2}.

EXAMPLE 7. In the situation in Fig. 2, we have Po = P(f) =

f

2 '- 3,

FIGURE 2

S*f Mf
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FIGURE 3

Mf

f

{a(x-l)++P(x-2)+:-I~a~I,-1~2a+p~I}, while /*(f)=/2=
[0,3] and P*(f)=P2= {S*f}. I

EXAMPLE 8. In the situation in Fig. 3, we have Po = P*(f) = {a(l-x) +
a(x-l)++P(x-2)+:-I~a,p~I}, while /*(f) =/1 = [0,2] and
P*(f)=PI={(1-x)+(x-l)++P(x-2)+:-I~P~I}. I

EXAMPLE 9. In the situation in Fig. 4, we have P(f) = {a(x - 1)+ +
P(x-2)+:-I~a~1 and -1~2a+p~I}, and/*(f)=/o=[O,I], and
P*(f) = P(f). I

5. REMARKS

(1) The idea of a maximal alternator was introduced in Schumaker [5 J,
where the existence of at least one was established. The fact that maximal
alternators are not unique in general was also observed there, and in fact, the
idea for the construction of the function f in the proof of Theorem 3 is
inherent in [5, Example (3.15)]. Theorem 3 has recently been proved
independently by Niirnberger and Sommer [4] using an entirely different
proof.

(2) Although we have restricted our attention to splines with simple knots,
all of the results of this paper have obvious analogs for the spaces
Y(Pm; M; L1) of polynomial splines with multiple knots, and for spaces of
Tschebyscheffian splines (cf. [5-7]) as well.

(3) The nonuniqueness of continuous selections expressed in Theorem 1

2 ,3,,,

640/38/1-6

FIGURE 4

Mf

f



80 BLATTER AND SCHUMAKER

coupled with the fact that the continuous selection S * constructed in [3] is
quite complicated suggests the following problem: find a simple continuous
selection for spline approximation.
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